Influence of the Lanthanum Exchange Degree on the Concentration and Acid strength of Bridging Hydroxyl Groups in Zeolites La, Na-X

Jun Huang, Yijiao Jiang and Michael Hunger
Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart, Germany

Introduction

Lanthanum exchange of zeolites is an important procedure for the preparation of acidic zeolite catalysts, e.g., for applications in cracking processes [1] and alkylation reactions [2]. According to the mechanism of Hirschler and Plank [3], the dissociation of water molecules in the electrostatic fields of multivalent extra-framework cations in zeolites results in the formation of metal OH groups bound to the extra-framework cations and bridging OH groups (SiOHAI) acting as Brensted acid sites (Scheme 1). The concentration and location of zeolitic hydroxyl groups formed via the above-mentioned mechanism depend strongly on the dehydration temperature and the type of multivalents cations. [4]. In the present work, the hydroxyl coverage of X-type zeolites with different lanthanum exchange degrees was quantitatively investigated by ¹H MAS NMR spectroscopy. Deuterated acetonitrile and pyridine were used to probe the acid strength and accessibility of these bridging OH groups.

Results and Discussion

Table 1: Assignments of ¹H MAS NMR spectra in Fig. 1.

<table>
<thead>
<tr>
<th>Signals / ppm</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>silanol groups (SiOH)</td>
</tr>
<tr>
<td>2.5</td>
<td>LaOH groups in supercages (LaOH®)</td>
</tr>
<tr>
<td>3.6</td>
<td>bridging OH groups in supercages (SiOH®Al)</td>
</tr>
<tr>
<td>4.6</td>
<td>bridging OH groups in sodalite cages (SiOH®Al)</td>
</tr>
<tr>
<td>6.2</td>
<td>LaOH groups in the sodalite cages (LaOH®)</td>
</tr>
</tbody>
</table>

From Fig. 2:

- At 393 K, first bridging OH groups and lanthanum hydroxyl groups in the supercages (SiOH®Al and LaOH®Al) have been formed. The signals of SiOH®Al and LaOH®Al groups are partially overlapped by the signals of water molecules.
- At 423 K, the maximum concentration of bridging OH groups in the supercages (SiOH®Al) is obtained. The concentration of SiOH®Al in La,Na-X/75 is by a factor of 1.72 higher than that in La,Na-X/42. This factor agrees well with the ratio of lanthanum exchange degrees (75 % / 42 % = 1.79). Hence, the number of bridging OH groups formed via the Hirschler-Plank mechanism (Scheme 1) correlates with the number of extra-framework lanthanum cations.

From Fig. 2:

- At 423 K, the maximum concentration of bridging OH groups reaches a maximum at 423 K via the Hirschler-Plank mechanism. The acid strength of bridging OH groups was found to increase with increasing lanthanum exchange degree. The polarization effect of lanthanum cations may be the reason of the different acid strengths.

Experimental Section

Zeolites La,Na-X/42 and La,Na-X/75 (n/Li = 1.3, La³⁺-exchange degrees of 42.5 % and 75 %) were prepared by exchange of Na-X with a 0.1 M solution of La(NO₃)₃. All samples were dehydrated at temperatures of 393 to 673 K at p < 10⁻⁵ Pa for 12 h. Acetonitrile-d₃ and pyridine-d₅ were loaded on dehydrated zeolites La,Na-X using a vacuum line. Before the ¹H MAS NMR measurements, the dehydrated and loaded samples were transferred into a 4 mm MAS NMR rotor inside a glove box under dry nitrogen. The ¹H MAS NMR investigations were performed on a Bruker MSL-400 spectrometer at a resonance frequency of 400.1 MHz.

Conclusions

The concentration of bridging OH groups reaches a maximum at dehydration temperature of 423 K. A further raise of the dehydration temperature leads to a dehydroxylation of the above-mentioned zeolites and a negligible dealumination of the framework only. The number of maximum bridging OH groups formed on zeolite La,Na-X via the Hirschler-Plank mechanism correlates well with the lanthanum exchange degree. The acid strength of bridging OH groups was found to increase with increasing lanthanum exchange degree. The polarization effect of lanthanum cations may be the reason of the different acid strengths.

References